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Summary. Case–control studies are commonly used to study whether a candidate allele and a disease are
associated. However, spurious association can arise due to population substructure or cryptic relatedness,
which cause the variance of the trend test to increase. Devlin and Roeder derived the appropriate variance
inflation factor (VIF) for the trend test and proposed a novel genomic control (GC) approach to estimate
VIF and adjust the test statistic. Their results were derived assuming an additive genetic model and the
corresponding VIF is independent of the candidate allele frequency. We determine the appropriate VIFs for
recessive and dominant models. Unlike the additive test, the VIFs for the optimal tests for these two models
depend on the candidate allele frequency. Simulation results show that, when the null loci used to estimate
the VIF have allele frequencies similar to that of the candidate gene, the GC tests derived for recessive
and dominant models remain optimal. When the underlying genetic model is unknown or the null loci and
candidate gene have quite different allele frequencies, the GC tests derived for the recessive or dominant
models cannot be used while the GC test derived for the additive model can be.

Key words: Cochran–Armitage trend test; Genetic model; Optimal genomic control; Variance inflation
factor.

1. Introduction
Case–control studies testing linkage disequilibrium or asso-
ciation provide a more powerful method than linkage stud-
ies for detecting small genetic effects on traits (Risch and
Merikangas, 1996). One drawback of the case–control design
is that it may produce spurious association due to popula-
tion substructure. Substructure also creates departure from
Hardy–Weinberg equilibrium (HWE) that induces a positive
dependence in the alleles in randomly selected individuals.
On the other hand, family-based association studies, such as
the case–parents trio design (Spielman, McGinnis, and Ewens,
1993; Schaid and Sommer, 1993), use family members as con-
trols and reduce the effect of population substructure. To
carry out a family-based study genotypes of both cases and
their family members, including parents, are obtained. This is
often difficult for studies of late onset diseases. In case–control
studies, however, population controls are used as parental
genotypes are not needed. Moreover, it is shown that case–
control studies are more powerful than family-based associa-
tion studies (Risch and Teng, 1998). If the hidden population

stratification can be adjusted, it is much easier to recruit pop-
ulation controls than family-based controls. Recently, several
methods have been proposed to adjust the effect of popula-
tion substructure. The genomic control (GC) of Devlin and
Roeder (1999) is an important one of them, which is also the
focus of this article.

To adjust for hidden population stratification in case–
control studies, Devlin and Roeder (1999) proposed a novel
GC method using trend tests (see also Devlin, Roeder, and
Wasserman, 2001). When the hidden population stratifica-
tions exist, the variance of the trend test would be inflated.
The principle of GC method is that, if the population strati-
fication affects the candidate gene, it will also affect the un-
related null loci. Hence, the variance inflation of the trend
test for the null loci can be used to adjust that of the trend
test for the candidate gene. The key assumption of the GC
approach is that, under the null hypothesis of no association,
the trend test statistics for unrelated genes are independent
and follow the same distribution. So the variance inflation is
a constant across unrelated genes on the same chromosome.
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Under this assumption, they derived a variance inflation fac-
tor (VIF) for the trend test to estimate the VIF using null
loci and the variance of the trend test for the candidate gene
is then adjusted. The GC tests have been shown more power-
ful than some family-based tests using trios (Bacanu, Devlin,
and Roeder, 2000).

In genetic analysis, a genetic model refers to the mode of
inheritance corresponding to a recessive, additive, or domi-
nant disease. For complex diseases, however, the underlying
genetic model is usually unknown. In that situation, the ad-
ditive genetic model is easy to use and it has some robustness
properties, especially when the recessive model can be elim-
inated (Freidlin et al., 2002). The GC test given in Devlin
and Roeder (1999) was derived assuming an additive genetic
model. But the properties of GC under other genetic models
have not been reported. In this article, we examine its prop-
erties for recessive and dominant models. In Section 2, the
GC of Devlin and Roeder (1999) is reviewed. The VIFs for
recessive and dominant models are obtained in Section 3. Sim-
ulation studies comparing GC under various genetic models
are reported in Section 4. Discussion of using GC when the
genetic model is unknown is given at the end.

2. Review of the GC Test
In case–control studies, cases and controls are sampled in-
dependently and their genotypes are obtained. Let A be the
high-risk candidate allele and a the normal one. The data
from a case–control design are summarized in a 2 × 3 table
(see Table 1), where ri (si ), i = 0, 1, 2 is the number of cases
(controls) whose genotypes have i A alleles.

Denote the penetrances as fi = Pr(case | iA alleles in geno-
type), i = 0, 1, 2. Under the null hypothesis of no association,
f 0 = f 1 = f 2, and under the alternative hypothesis, f 0 ≤
f 1 ≤ f 2, where at least one inequality holds. The recessive,
additive, and dominant genetic models are defined by f 0 =
f 1, f 1 = (f 0 + f 2)/2, and f 1 = f 2, respectively. Sasieni (1997)
suggested using Cochran–Armitage (CA) trend test (Cochran,
1954; Armitage, 1955) for data given in Table 1. When the
scores x = (x0, x1, x2), x0 ≤ x1 ≤ x2, are assigned to three
genotypes (aa, Aa, AA), respectively, the CA trend test can
be written as

Z2 =

N

{
2∑

i=0

xi(Sri −Rsi)

}2

RS

{
N

2∑
i=0

x2
ini −

(
2∑

i=0

xini

)2} . (1)

Note that the CA trend test is invariant to a linear transfor-
mation of the scores x, so all scores are of form x = (0, η, 1),

Table 1
Genotype distribution

aa Aa AA Total

Cases r0 r1 r2 R
Controls s0 s1 s2 S
Total n0 n1 n2 N

0 ≤ η ≤ 1. For any η, Z2 in (1) is denoted by Z2
η. Note that Z2

0,
Z2

1/2, and Z2
1 are the CA trend tests based on optimal scores

for the recessive, additive, and dominant models, respectively
(Sasieni, 1997; Freidlin et al., 2002; Zheng et al., 2003).

Following Devlin and Roeder (1999), let Gadd
i = 0, 1, 2,

i = 1, . . . ,R, respectively, when the ith case has genotype
aa, Aa, AA. Similarly, Hadd

j , j = 1, . . . ,S, are defined for
controls. Consider the test statistic defined by the differ-
ence in the number of A alleles between cases and con-
trols, T add =

∑
i
Gadd

i −
∑

j
Hadd

j . When R = S, the trend

test Z1/2 is proportional to T add. Assume these samples came
from m subpopulations, which contribute a1, . . . , am cases
and b1, . . . , bm controls, respectively. Thus,

∑
k
ak = R and∑

k
bk = S. Moreover, assume that genotypes of members of

the different subpopulations are independent.
Devlin and Roeder defined the VIF (λ) relative to the trend

test Z1/2 as λ1/2 = varH0(T
add)/{4Rpq(1 + F )}, where p is the

frequency of allele A in the population, q = 1 − p, and F
is Wright’s coefficient of inbreeding. In the following all vari-
ances and covariances are evaluated under the null, so the sub-
script H0 is omitted. Note that the denominator, 4Rpq(1 + F ),
is the asymptotic variance of the corresponding score function
with x = (0, 1, 2) under the null hypothesis, as N → ∞ and
m bounded, i.e., var(

∑
i
xiri −

∑
i
xisi) ≈ 4Rpq(1 + F ). Gen-

erally, when R �= S, T add = S
∑

i
Gadd

i −R
∑

j
Hadd

j should be
used and the denominator of λ1/2 is the asymptotic variance of
S

∑
i
xiri −R

∑
i
xisi. Assuming var(Gadd

i ) = var(Hadd
j ) and

cov(Gadd
i , Gadd

l ) = cov(Hadd
j , Hadd

l ) = cov(Gadd
i , Hadd

j ), i �= l and
j �= l, where subjects i, j, l are from the same subpopulation,
they obtained for R = S

var(T add) = 2Rvar
(
Gadd

1

)
+

∑
k

{ak(ak − 1) + bk(bk − 1) − 2akbk}

× cov
(
Gadd

1 , Gadd
2

)
, (2)

where var(Gadd
1 ) = 2pq(1 + F ) and cov(Gadd

1 , Gadd
2 ) = 4Fpq ,

which follow from the additive property of Gadd
i and Hadd

j .
Thus,

λ1/2 = 1 +

F
∑
k

{ak(ak − 1) + bk(bk − 1) − 2akbk}

R(1 + F )
.

Note that λ1/2 is independent of p or q but depends on ak ,
bk , m, and F. Devlin and Roeder examined the effect of pop-
ulation substructure on λ1/2. When there is no population
substructure or cryptic relatedness (F = 0), under the null
hypothesis, Z2

1/2 follows central chi-square distribution with

one degree of freedom χ2
1. To adjust for population substruc-

ture or cryptic relatedness, they proposed a new test statistic
Z2

1/2/λ1/2 ∼ χ2
1 for the null model to allow for extra variance.

In practice, λ1/2 is estimated using data from unrelated mark-
ers (null loci). These null loci are assumed to be unrelated to
the trait and segregate independently, and the effect of pop-
ulation substructure on them is similar to that at the trait
locus.
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3. VIFs for the Recessive and Dominant Models
When the underlying genetic model is recessive or dominant,
it is reasonable to use Z2

0/λ0 and Z2
1/λ1, respectively, where

λ0 and λ1 are VIFs corresponding to recessive and dominant
models. As in Devlin and Roeder, the following derivations are
for the situation R = S. The results can readily be generalized
to the case when R �= S.

Under the null hypothesis, it can be shown that, for reces-
sive and dominant models, the asymptotic variances in the
denominators of λ0 and λ1 are

var(r2 − s2) ≈ 2Rpq(p + qF ){1 + p(1 − F )},

var((r1 + r2) − (s1 + s2)) ≈ 2Rpq(q + pF ){1 + q(1 − F )},

respectively. Since the dominant and recessive models are
symmetric, we focus on the recessive model. For the ith
case, i = 1, . . . ,R, let Grec

i = 0 for the genotype aa or Aa
and Grec

i = 1 for genotype AA. Similarly, H rec
j , j = 1, . . . ,S,

are defined for controls. When R = S, Z0 is proportional
to T rec =

∑
i
Grec

i −
∑

j
H rec

j . To evaluate var(T rec), we need
to calculate var(Grec

1 ) and cov(Grec
1 , Grec

2 ). As in Devlin and
Roeder (1999), it can be shown that var(Grec

1 ) = pq(p + qF )×
{1 + p(1 − F )}. To obtain cov(Grec

1 , Grec
2 ), however, one re-

quires the joint distribution of (Grec
1 , Grec

2 ), i.e., Pr(AA, AA),
where both members are from the same subpopulation. This
differs from the derivation for the additive model as the joint
distribution of Gadd

1 and Gadd
2 is not required to obtain their

covariance.
Let X and Y be any two unrelated individuals, with alleles

A, B and C, D, respectively, randomly selected from the same
subpopulation, in which random mating occurs. Thus, the
identical-by-descent (IBD) relationship among the four alle-
les does not depend on the arrangement of alleles within in-
dividuals, e.g., the probability that A and B are IBD equals
the probability that A and C are IBD (Evett and Weir, 1998,
Chapter 4).

Following Evett and Weir (1998), let θ, γ, and δ be the
respective probability that any two, three, and four alleles,
selected at random from the same subpopulation, are IBD,
and let ∆ be the probability that any two pairs of alleles,
selected at random from the same subpopulation, are IBD.
Here, θ is F of Section 2. Assume that evolutionary equilib-
rium holds, i.e., the four probabilities (θ, γ, δ, and ∆) are
not changing over time. Then γ = 2θ2/(1 + θ), δ = 6θ3/
{(1 + θ) (1 + 2θ)}, and ∆ = θ2(1 + 5θ)/{(1 + θ) (1 + 2θ)}.
Let δ0, δ2, δ3, and δ4 be respective probability that the num-
ber of alleles IBD among A, B, C, D is 0, 2, 3, 4, and let δ22 be
the probability that any two pairs of alleles among A, B, C, D
are IBD. Then δ0 = 1 − 6θ + 8γ + 3∆ − 6δ, δ2 = θ − 2γ −
δ + 2δ, δ3 = γ − δ, δ22 = ∆ − δ, and δ4 = δ. Substituting
γ, δ, ∆ as functions of θ, we obtain δ0 = (1 − θ)3/g(θ), δ2 =
θ(1 − θ)2/g(θ), δ3 = 2θ2(1 − θ)/g(θ), δ22 = θ2(1 − θ)/g(θ),
δ4 = 6θ3/g(θ), where g(θ) = (1 + θ) (1 + 2θ) and θ = F .

The joint distribution of genotypes of two members from
the same subpopulation can be expressed in terms of the
five probabilities (δ0, δ2, δ3, δ22, δ4) and can be reduced to
a single parameter F or θ. These joint distributions are given
in Table 2. An example of the derivation of Pr(AA, AA) is
given in Appendix A. Some known results are readily ob-
tained from Table 2, for example, Pr(AA) = Pr(AA, AA) +

Table 2
Twelve of sixteen joint distributions of two genotypes from the

same subpopulation (Gi = Genotype i, i = 1, 2)

(G1, G2) Pr(G1, G2)

(AA, AA) 6F 3p+11F 2(1−F )p2 + 6F (1−F )2p3 + (1−F )3p4

(1 +F )(1 + 2F )

(AA, Aa) 4F 2(1−F )pq+ 6F (1−F )2p2q+2(1−F )3p3q
(1 +F )(1 + 2F )

(AA, aa) F (1−F )pq+2(1−F )3p2q2

(1 +F )(1 + 2F )

(Aa, AA) Pr(AA, Aa)
(Aa, Aa) 4Pr(AA, aa)
(Aa, aa) 4F 2(1−F )pq+ 6F (1−F )2pq2 + 2(1−F )3pq3

(1 +F )(1 + 2F )

(aA, AA) Pr(AA, Aa)
(aA, Aa) 4Pr(AA, aa)
(aA, aa) Pr(Aa, aa)
(aa, AA) Pr(AA, aa)
(aa, Aa) Pr(Aa, aa)

(aa, aa) 6F 3q+ 11F 2(1−F )q2 + 6F (1−F )2q3 + (1−F )3q4

(1 +F )(1 + 2F )

2Pr(AA, Aa) + Pr(AA, aa) = pF + (1 − F )p2 and cov(Gadd
1 ,

Gadd
2 ) = 4Pr(AA, AA) + 2Pr(AA, Aa) + 2Pr(Aa, AA) +

Pr(Aa, Aa) − 4p2 = 4Fpq .
In the recessive case, cov(Grec

1 , Grec
2 ) = Pr(AA, AA) −

Pr2 (AA). Using the results in Table 2 yields

cov
(
Grec

1 , Grec
2

)
=

2pqF {2p2 + p(5 − 3p)F + (3 − 4p)F 2 − pqF 3}
(1 + F )(1 + 2F )

. (3)

To evaluate cov(Gdom
1 , Gdom

2 ) for the dominant model, where
Gdom = 0 for aa and 1 for Aa or AA, the joint probabilities for
pairs (aa, Aa) and (Aa, Aa) are also required. Using Table 2
one finds that, by interchanging p and q, cov(Gdom

1 , Gdom
2 ) is

the same as (3).
From (3), the variance of T rec can be written as (Ap-

pendix B)

var(T rec) = 2Rvar
(
Grec

1

)
+

∑
k

{ak(ak − 1) + bk(bk − 1) − 2akbk}

× cov
(
Grec

1 , Grec
1

)
=

2Rp2q(1 + p)

(1 + F )(1 + 2F )
+

2RpqF

(1 + F )(1 + 2F )
h1(F, p)

+
2pqF

(1 + F )(1 + 2F )
h2(F, p)

∑
k

(ak − bk)
2,

where h1(F , p) = F 2(5p − 4 − p2) + F (3 + 3p2 − 9p) +
(1 − 3p2 + 3p) and h2(F , p) = 2p2 + p(5 − 3p)F +
(3 − 4p)F 2 − p(1 − p)F 3. Note that var(T rec) has the same
form as var(T add) given by (2). By calculus, it can be shown
that h2(F , p) ≥ 0 for any 0 ≤ p, F ≤ 1. Hence, if the
sizes of cases and controls in subpopulations, (ak , bk ), k =
1, . . . ,m, maximize (minimize) var(T add), the same (ak , bk ),
k = 1, . . . ,m also maximize (minimize) var(T rec).
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The VIF for the trend test Z0, appropriate for the recessive
model, is

λ0 =
var(T rec)

2Rpq(p + qF ) {1 + p(1 − F )} .

Interchanging p and q yields the VIF λ1 for the trend test
Z1, appropriate for the dominant model. To examine the ef-
fect of population substructure on λ0 and λ1, we consider the
same range of values of F = 0.01(0.05), m = 10, and ak =
bl = 16 for k = 1, . . . , 5 and l = 6, . . . , 10, and ak = bl = 4
for k = 6, . . . , 10 and l = 1, . . . , 5 considered by Devlin and
Roeder (1999). Compared with λ1/2 = 1.3 (F = 0.05) and
1.06 (F = 0.01) reported in Devlin and Roeder, we find that
λ0 is smaller (greater) than λ1/2 when p < 0.35 (p ≥ 0.35) and
λ1 is larger than λ1/2 for all p. For example, λ0 = 1.13(1.01)
when p = 0.05 and F = 0.05(0.01) and λ0 = 1.39(1.08) when
p = 0.45 and F = 0.05(0.01), while λ1 ranges from 1.43 to
1.56 (1.09–1.12) for F = 0.05(0.01). Further, numerical re-
sults show that λ0 increases with p while λ1 decreases with
p. From the formulae for λ1/2 and λ0, one sees that the VIF
will increase with the sample size as the {ak} and {bk} will
increase.

4. Simulation Results
In order to utilize the trend test with the correct variance, one
needs to estimate the VIF. One important finding in Section
3 is that VIFs for the recessive (λ0) model and the dominant
(λ1) model are functions of the candidate allele frequency p,
while the VIF for the additive (λ1/2) model is independent of
p. When estimating VIFs using null loci, λ0 and λ1 depend on
the allele frequencies of null loci unless the allele frequencies
of the candidate allele and null loci are close. In other words,
Z2

1/2/λ1/2 is not affected by frequencies of the candidate gene

and null loci, but both Z2
0/λ0 and Z2

1/λ1 do depend on these
frequencies.

In the first simulation, we compared the type I error and
power of Z0/λ

1/2
0 , Z1/2/λ

1/2
1/2, and Z1/λ

1/2
1 for recessive (REC),

additive (ADD), and dominant (DOM) models, respectively.
In this simulation, we assume that the candidate gene and
null loci have the same allele frequency. One-sided alterna-
tives are considered here as the high-risk allele is assumed
known. Our simulation is similar to that of Devlin and Roeder
(1999) who assumed that each subpopulation is in HWE. We
specify p, F , the penetrances f 0, f 1, f 2, and the sample sizes
for the subpopulations (ak , bk ), k = 1, . . . ,m, and c the num-
ber of null loci used to estimate the VIFs. In step 1, the
allele frequency pk was generated for the kth subpopulation
from the Beta distribution Beta((1 − F )p/F , (1 − F )q/F )
for k = 1, . . . ,m. In step 2, for individuals in the kth subpop-
ulation, two alleles were drawn at random from the binomial
bin(2, pk ) to create a genotype at the candidate allele lo-
cus. Disease status was randomly generated depending on the
number i of candidate alleles in the genotype using a Bernoulli
random variable with probability fi . The process continued
until all ak cases and bk controls were obtained. In step 3,
genotypes were generated for the c null loci using bin(2, pk ),
k = 1, . . . ,m. Statistics Z0,j , Z1/2,j , and Z1,j at the jth locus

(j = 1, . . . , c) were calculated and each λ
1/2
η , η = 0, 1/2, 1,

was estimated by λ
1/2
η = median(Zη,1, . . . ,Zη,c)/0.456 as in

Devlin and Roeder. Then the statistics Z0, Z1/2, and Z1 were

adjusted by λ
1/2
0 , λ

1/2
1/2, and λ

1/2
1 , respectively.

To illustrate, we first considered two extreme subpopula-
tions with 200 cases and 200 controls from each subpopula-
tion. The simulation results are reported in Table 3 (panel A).
We also consider less extreme subpopulations with 750 cases
and 250 controls from one subpopulation and 250 cases and
750 controls from the other. The simulation results are re-
ported in Table 3 (panel B). Type I error and power were
based on 100,000 and 10,000 replications, respectively. The
alternatives (f 0, f 1, f 2) are chosen such that the most pow-
erful adjusted trend test has about 80% power. When F =
0, i.e., there is no population substructure, the adjusted type
I errors typically are slightly greater than the 0.05 nominal
level. This is due to the estimation of the VIFs. The only ex-
ception occurred in the rare recessive situation (0.059) and
this may be a result of the small number of cases used in
Table 3 (panel A). To check this, a simulation with 500 cases
and 500 controls per subpopulation (a1 = b2 = 500, a2 = b1 =
0) was carried. The adjusted and unadjusted sizes for the re-
cessive model become 0.053 and 0.051, respectively. When the
allele frequency is small (p ≤ 0.1), Z1/λ

1/2
1 and Z1/2/λ

1/2
1/2 have

similar power properties as most cases will have only one al-
lele. For common variants, however, there is a noticeable loss
of power when Z1/2/λ

1/2
1/2 is used and the trait follows a dom-

inant or recessive pattern.
The second simulation is similar to the first one, but the

candidate gene and null loci now have different frequencies. In
this simulation, we only examine the effect of allele frequency
discrepancy on the adjusted type I error. Results are reported
in Table 4 (null loci have different allele frequencies from the
candidate allele) and Table 5 (null loci have allele frequencies
near that of the candidate allele). The frequencies of null loci
are randomly chosen from a given uniform distribution. For
example, when the candidate gene has frequency p = 0.1,
the frequencies of null loci follow the uniform distribution
(0.4, 0.6). We find that the adjusted size of the GC test for the
additive model is close to the nominal level in both Tables 4
and 5 while, for the other two models, the adjusted sizes are
close to the nominal level when the frequencies of null loci are
close to that of the candidate gene (Table 5). The difference
between the nominal and adjusted levels, however, becomes
larger when the frequencies of the null loci differ from that
of the candidate allele (Table 4). The empirical power is also
reported in Table 5 for F = 0.005 when the frequencies of
the null loci are close to that of the candidate gene. It shows
that in this situation the GC trend tests for the dominant and
recessive models can still be used except in the rare recessive
situation. The power properties of three GC trend tests in
Table 5 are similar to those reported in Table 3 (panels A
and B).

5. Discussion
VIFs for the optimal trend tests for the recessive and domi-
nant models are obtained here. While they have the same form
as the factor for the additive model, they are functions of the
frequency of the candidate allele. Simulation results demon-
strate that the optimal GC tests for the recessive or dominant
model can be used when the candidate gene and null loci
have similar allele frequency. Because the Centers for Disease
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Table 3
Type I error (adjusted and unadjusted) and power comparison of GC trend tests for three different models: candidate gene and
null loci have the same allele frequency (p) and the number of null loci c = 41 with 10,000 (power) and 100,000 (type I error)

simulations

F p Model DOM ADD REC

Panel A: a1 = 200, a2 = 0 and b1 = 0, b2 = 200
0 0.1 Null 0.0581 (0.0512) 0.058 (0.052) 0.055 (0.059)

DOM (f 0 = 0.1, f 1 = f 2 = 0.167) 0.784 0.762 0.115
ADD (f 0 = 0.1, f 1 = 0.165, f 2 = 0.23) 0.792 0.801 0.218
REC (f 0 = f 1 = 0.1, f 2 = 0.475) 0.210 0.435 0.788

0.5 Null 0.057 (0.051) 0.056 (0.051) 0.056 (0.050)
DOM (f 0 = 0.1, f 1 = f 2 = 0.172) 0.800 0.627 0.199
ADD (f 0 = 0.1, f 1 = 0.143, f 2 = 0.186) 0.674 0.791 0.611
REC (f 0 = f 1 = 0.1, f 2 = 0.163) 0.241 0.693 0.823

0.005 0.1 Null 0.057 (0.17) 0.057 (0.18) 0.036 (0.09)
DOM (f 0 = 0.1, f 1 = f 2 = 0.24) 0.809 0.775 0.143
ADD (f 0 = 0.1, f 1 = 0.23, f 2 = 0.36) 0.782 0.768 0.315
REC (f 0 = f 1 = 0.1, f 2 = 0.6) 0.178 0.300 0.803

0.2 Null 0.056 (0.16) 0.056 (0.17) 0.053 (0.10)
DOM (f 0 = 0.1, f 1 = f 2 = 0.205) 0.780 0.705 0.217
ADD (f 0 = 0.1, f 1 = 0.2, f 2 = 0.3) 0.819 0.802 0.523
REC (f 0 = f 1 = 0.1, f 2 = 0.32) 0.202 0.390 0.785

0.5 Null 0.056 (0.16) 0.056 (0.17) 0.056 (0.16)
DOM (f 0 = 0.1, f 1 = f 2 = 0.225) 0.807 0.507 0.194
ADD (f 0 = 0.1, f 1 = 0.195, f 2 = 0.29) 0.800 0.807 0.693
REC (f 0 = f 1 = 0.1, f 2 = 0.2) 0.235 0.557 0.789

0.05 0.2 Null 0.050 (0.35) 0.046 (0.36) 0.044 (0.27)
DOM (f 0 = 0.1, f 1 = f 2 = 0.55) 0.783 0.675 0.201
ADD (f 0 = 0.1, f 1 = 0.475, f 2 = 0.85) 0.745 0.719 0.520
REC (f 0 = f 1 = 0.1, f 2 = 0.88) 0.248 0.384 0.809

0.5 Null 0.051 (0.34) 0.049 (0.37) 0.051 (0.34)
DOM (f 0 = 0.1, f 1 = f 2 = 0.65) 0.833 0.502 0.184
ADD (f 0 = 0.1, f 1 = 0.45, f 2 = 0.8) 0.729 0.742 0.677
REC (f 0 = f 1 = 0.1, f 2 = 0.45) 0.210 0.422 0.744

Panel B: a1 = 750, a2 = 250 and b1 = 250, b2 = 750
0 0.1 Null 0.0561 (0.048)2 0.057 (0.049) 0.054 (0.047)

DOM (f 0 = 0.1, f 1 = f 2 = 0.128) 0.795 0.776 0.134
ADD (f 0 = 0.1, f 1 = 0.127, f 2 = 0.154) 0.802 0.818 0.273
REC (f 0 = f 1 = 0.1, f 2 = 0.226) 0.167 0.352 0.794

0.005 0.1 Null 0.053 (0.18) 0.053 (0.19) 0.056 (0.08)
DOM (f 0 = 0.1, f 1 = f 2 = 0.158) 0.810 0.780 0.202
ADD (f 0 = 0.1, f 1 = 0.155, f 2 = 0.210) 0.813 0.806 0.469
REC (f 0 = f 1 = 0.1, f 2 = 0.28) 0.137 0.247 0.837

0.05 0.1 Null 0.046 (0.37) 0.042 (0.37) 0.053 (0.21)
DOM (f 0 = 0.1, f 1 = f 2 = 0.336) 0.804 0.780 0.336
ADD (f 0 = 0.1, f 1 = 0.332, f 2 = 0.564) 0.815 0.810 0.672
REC (f 0 = f 1 = 0.1, f 2 = 0.58) 0.148 0.230 0.824

1Adjusted; 2unadjusted.

Control will be genotyping the several thousand participants
in the National Health Interview Survey, in the future it
should be possible to select null loci or find single-nucleotide
polymorphisms (SNPs) whose frequencies are near that of the
candidate allele. When this is feasible, Z0/λ

1/2
0 , Z1/2/λ

1/2
1/2, or

Z1/λ
1/2
1 can be used when the underlying mode of inheritance

is recessive, additive, or dominant, respectively. For a com-
plex disease, however, the genetic model is usually unknown.
Sometimes a previous segregation analysis would suggest the
most plausible genetic model (Sham, 1998). This model might
be tested by a procedure similar to that developed by Lee and
Chang (2000) and Scherag et al. (2002) for the family-based

trio studies. Then one can apply the GC test with the appro-
priate genetic model.

The GC test can be used to check an association found
using a standard trend test. In this situation, the recessive
(additive or dominant) GC test should be used when the
trend test is optimal for the recessive (additive or domi-
nant) model. For example, analyzing a case–control study,
Tian et al. (2004) reported a significant association between
Klippel–Trenaunay syndrome (KTS) and the angiogenic fac-
tor, VG5Q, when the mutation E133K of VG5Q is presented.
The authors then applied the GC test with the additive scores
to verify their finding. The association between KTS and
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Table 4
Adjusted type I error of GC trend tests under different
frequencies of null loci: c = 41 null loci and 100,000

simulations

Gene frequency

F Candidate Null loci DOM ADD REC

a1 = b2 = 200, a2 = b1 = 0
0.005 0.1 (0.4, 0.6) 0.074 0.054 0.011

0.1 (0.2, 0.4) 0.063 0.055 0.021

a1 = a2 = b1 = b2 = 100
0.1 (0.4, 0.6) 0.057 0.059 0.054
0.1 (0.2, 0.4) 0.057 0.058 0.053

a1 = b1 = 200, a2 = b2 = 0
0.1 (0.4, 0.6) 0.057 0.059 0.052
0.1 (0.2, 0.4) 0.057 0.058 0.051

a1 = b2 = 200, a2 = b1 = 0
0.05 0.1 (0.4, 0.6) 0.071 0.036 0.001

0.1 (0.2, 0.4) 0.051 0.036 0.005

a1 = a2 = b1 = b2 = 100
0.1 (0.4, 0.6) 0.058 0.068 0.048
0.1 (0.2, 0.4) 0.059 0.067 0.046

VG5Q that they reported is based on a dominant genetic
model. To confirm the result using the GC method, it would
be appropriate for them to use the dominant GC test when
null loci that whose frequencies close to that of E133K can be
found.

It is not likely for a complex disease to strictly follow any
of the three common genetic models. The fact that we have
shown that the VIF depends on the allele frequency of the
candidate gene for recessive and dominant models strongly
suggests that it would be similarly dependent for other non-
additive models. If all the genetic models are scientifically
plausible or one cannot obtain null loci with frequencies near
that of the candidate, then Z1/2/λ

1/2
1/2, the additive GC test of

Table 5
Adjusted type I errors and power of GC trend tests under
similar frequencies of null loci with two subpopulations

(a1 = b2 = 200, a2 = b1 = 0): c = 41 null loci and 100,000
(type I error) and 10,000 (power) simulations

Gene frequency

F Candidate Null loci Model DOM ADD REC

0.005 0.1 (0.05, 0.15) Null 0.055 0.056 0.037
DOM 0.805 0.775 0.139
ADD 0.794 0.786 0.324
REC 0.176 0.311 0.788

0.2 (0.1, 0.3) Null 0.056 0.055 0.051
DOM 0.781 0.706 0.203
ADD 0.804 0.799 0.528
REC 0.190 0.385 0.800

0.5 (0.4, 0.6) Null 0.055 0.056 0.056
DOM 0.785 0.506 0.185
ADD 0.781 0.788 0.680
REC 0.228 0.555 0.766

0.05 0.1 (0.05, 0.15) Null 0.049 0.047 0.061
0.2 (0.1, 0.3) Null 0.052 0.047 0.057

Devlin and Roeder (1999), should be used as it is most robust
across three genetic models and is independent of candidate
gene frequency.

In this article, we considered the properties of GC tests
for case–control studies under various genetic models. Other
important methods and tests that account for the effect of
population substructure, Pritchard and Donnelly (2001) and
Satten, Flanders, and Yang (2001), have been developed for
candidate gene association studies.
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Résumé

Les études cas-témoins sont fréquemment utilisées pour
étudier l’association entre un allèle candidat et une maladie.
Cependant, une association factice peut être observée du fait
d’une stratification de population apparente ou cryptique qui
augmente la variance du test de tendance. Devlin et Roeder
ont dérivé ce facteur d’inflation de la variance (FIV) pour le
test de tendance et ont proposé une nouvelle approche dite
des ‘contrôles génomiques’ afin d’estimer le FIV et d’ajuster
la statistique de test. Leurs résultats ont été dérivés sous
l’hypothèse d’un modèle génétique additif de telle sorte que le
FIV correspondant soit indépendant de la fréquence allélique
de l’allèle candidat. Ici, nous déterminons le FIV appropriés
pour des modèles récessif et dominant. Contrairement au cas
additif, les FIV des tests optimaux pour ces deux modèles
sont dépendants de la fréquence allélique de l’allèle candi-
dat. Des études de simulation montrent que, lorsque les mar-
queurs nuls, i.e., les marqueurs utilisés pour estimer le FIV,
ont des fréquences alléliques proches de celle du gène candi-
dat, l’approche ‘contrôles génomiques’ reste optimale dans un
contexte de modèle génétique dominant ou récessif. En re-
vanche, lorsque le modèle génétique est inconnu ou lorsque
les marqueurs nuls ont des fréquences alléliques différant de
celles du gène candidat, l’approche ‘contrôles génomiques’ ne
reste valable que pour un modèle génétique additif.
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Appendix A

There are 16 possible pairs of genotypes for two alleles, e.g.,
AA × AA, Aa × AA, etc. Twelve of them are given in Table 2.
We derive the joint distribution of the pair (AA, AA). Let
A = A, B = A, C = A, and D = A. In the following A ≡
B is used to denote that A and B are IBD, etc. The fol-
lowing events are mutually exclusive: all four alleles are IBD
(A ≡ B ≡ C ≡ D), three alleles are IBD (A ≡ B ≡ C, A ≡
B ≡ D, A ≡ C ≡ D, or B ≡ C ≡ D), two pairs of alleles
are IBD (A ≡ B and C ≡ D, A ≡ C and B ≡ D, or A ≡ D
and B ≡ C), two alleles are IBD (A ≡ B, A ≡ C, A ≡ D,
B ≡ C, B ≡ D, or C ≡ D), and no alleles are IBD. By Law
of Total Probability, Pr(AA, AA) = δ4p + (4δ3 + 3δ22)p

2 +
6δ2p

3 + δ0p
4. Substituting the five probabilities δ0, δ2, δ3, δ22,

δ4 as functions of F yields the first entry in Table 2.

Appendix B

For any R and S, T rec = S
∑

i
Grec

i −R
∑

j
H rec

j . “rec” is not
shown below.

var(T ) = S2
R∑
i=1

var(Gi) + R2
S∑

j=1

var(Hj) + 2S2
∑
i<l

cov(Gi, Gl)

+ 2R2
∑
j<l

cov(Hj , Hl) − 2RS
∑
i

∑
j

cov(Gi, Hj)

= RS(R + S)var(G1)

+
m∑
k=1

{
ak(ak − 1)S2 + bk(bk − 1)R2 − 2akbkRS

}
× cov(G1, G2),

where var(G1)= pq(p+Fq){1+(1−F )p},
∑

k
{ak(ak−1)S2+

bk (bk − 1)R2 − 2akbkRS} =
∑

k
(akS − bkR)2 − RS(R + S),

and cov(Gi , Gl ) is given by (3). Thus, we obtain

var(T ) = RS(R + S)pq(p + Fq){1 + (1 − F )p}

−RS(R+S)
2pqF (2p2 + p(5− 3p)F + (3− 4p)F 2 − pqF 3)

(1 + F )(1 + 2F )

+
2pqF (2p2 + p(5 − 3p)F + (3 − 4p)F 2 − pqF 3)

(1 + F )(1 + 2F )

×
∑
k

(akS − bkR)2

=
RS(R + S)p2q(1 + p)

(1 + F )(1 + 2F )
+

RS(R + S)pqF
(1 + F )(1 + 2F )

h1(F, p)

+
2pqF

(1 + F )(1 + 2F )
h2(F, p)

∑
k

(akS − bkR)2.


